以往对SFMs涌现的讨论都是关于自然界中满足限制条件的所有动力系统的一般讨论。本节将联系与神经科相关的动力系统,旨在阐述SFMs如何自然地从基础神经科学网络中涌现以及在状态空间中创建概率分布。 4.1. 神经群体模型显示出基本的2D动力学 神经群体模型(neural mass model)是神经元集体活动的简化数学表示。它通常来源于由耦合点神经元模型表示的一群神经元。在对动作电位分布和/或神经元间耦合的统计假设下,应用平均场理论推导集体变量方程,刻画神经元群的均值、方差和更高统计矩的演化。显著的例子包括假设泊松分布尖峰的Brunel Wang模型[63],Zerlaut等人的使用主方程和传递函数形式的模型[64],以及利用导致神经元同步集群的神经元参数异质性进行设计的Stefanescu–Jirsa模型[65,66]。因为是在Lorentzian假设下的严密论证,Montbrio等人的平均场推导从理论角度看极具吸引力[67]。它导出了两个集体状态变量,即平均放电率r和平均神经元膜电位 V。相应的相流和方程分别见图5A和5B。这些以及其他所有神经群体模型的共同点是,将平均场动力学简化为低维表示,通常是以2维的形式。神经群体模型通常包括低放电率对应的下状态(down state),高放电率对应的上状态(upstate),以及在上状态中普遍显示振荡动力学的能力。暂时忽略振荡动力学,我们可以从概念上将共存的高、低状态,以及由分岔导致它们稳定性的改变,简化为单一变量x的相流,如图5C所示。这里将相流简化为两种稳定状态的分离,外部控制参数改变导致鞍节点分岔,可能会使系统失稳。该模型在数学上与Wong–Wang模型一致,后者是由 Brunel Wang 模型在隔绝近似的条件下推导得到。我们想要强调的是,这种表示并不是Brunel Wang 神经群体模型特有的,而是刻画了所有神经群体模型的基本动力学特性,即对于系列中间控制参数,同时存在低、高放电状态,经控制变量取高/低值的分岔,丢失低/高放电状态。因此,在这我们用该简化神经群体作为下节等变脑网络模型的基本构建块。
如果我们接受这里讨论的熵和信息的概念作为第一个基本原语,那么根据我们对熵作为不确定性的直观理解,从信息论框架中得出的自然是以概率分布函数形状的变化表示的确定和随机影响的基本结构。这个结果适用于自然界中的所有系统,而不仅仅是大脑,这就是为什么 Hermann Haken 经常将此称为协同学的第二个基础[4]。 将视野缩小到大脑网络中存在的作用,我们将神经群体和网络的基本特性与状态空间中不变流形的出现联系起来,这是行为神经科学中,特别是生态心理学和协调动力学,已知的结构化流的载体。SFMs代表预测编码中的内部模型。这种与行为的联系很重要,因为它经常被要求指导神经科学研究,使其具有生态意义。当显式地计算概率分布函数时,自由能自然地表现为流形上的结构化流,而流形又是由网络节点之间的耦合产生的。在主动推理过程中,大脑会调整这些耦合以改变对应的SFMs(又名内部模型)。 让我们记住,一方面这些耦合(或更准确地说:耦合参数)是预测编码中自由能最小化的变化目标,另一方面负责在行为上实现特定任务的功能架构。与自由能原理处理网络在连接和参数方面“如何”(“how”)演化的机制不同,SFMs处理的是“what”——即,网络需要满足哪些约束才能实现特定流和流形的出现[16]。照此,熵和自由能可以通过学习和发展用以解释过程的演变,但也可以被视为在较短的认知表现时间尺度上发挥作用。因此,低维任务特定流形上的流在抽象状态空间中将大脑中熵的机械表现刻画为建设性的不可逆性,因此,也是神经活动和行为之间的主要使能连接。
参考文献
[1] Friston K, Mattout J and Kilner J 2011 Action understanding and active inference Biol. Cybern. 104 137–60[2] Friston K J and Kiebel S J 2009 Predictive coding under the free-energy principle Phil. Trans. R. Soc. B 364 1211–21[3] Adams R A, Shipp S and Friston K J 2013 Predictions not commands: active inference in the motor systemBrain Struct. Funct. 218 611–43[4] Haken H 1983 An Introduction Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology (New York: Springer)[5] Nicolis G and Prigogine I 1977 Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order through Fluctuations (New York:Wiley)[6] Varela F J, Thompson E T and Rosch E 1992 The Embodied Mind: Cognitive Science and Human Experience (Cambridge,MA: MIT Press)[7] Jaynes E T 1957 Information theory and statisticalmechanics Phys. Rev. 106 620[8] Shannon C E 1948 A mathematical theory of communication Bell Syst. Tech. J. 27 379–423[9] Jirsa V K 2020 Structured flows on manifolds as guiding concepts in brain science Selbstorganisation–ein Paradigma für die Humanwissenschaften (Berlin: Springer FachmedienWiesbaden) pp 89–102[10] Jirsa V K, McIntosh A R and Huys R 2019 Grand unified theories of the brain need better understanding of behavior: the two-tiered emergence of function Ecol. Psychol. 31 152–65[11] McIntosh A R and Jirsa V K 2019 The hidden repertoire of brain dynamics and dysfunction Netw. Neurosci. 3 994–1008[12] Friston K 2010 The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11 127–38[13] Friston K J and Stephan K E 2007 Free-energy and the brain Synthese 159 417–58[14] Friston K J, Daunizeau J, Kilner J and Kiebel S J 2010 Action and behavior: a free-energy formulation Biol. Cybern. 102 227–60[15] Gottwald S and Braun D A 2020 The two kinds of free energy and the Bayesian revolution PLoS Comput. Biol. 16 e1008420[16] Pillai A S and Jirsa V K 2017 Symmetry breaking in space-time hierarchies shapes brain dynamics and behavior Neuron 94 1010–26[17] Woodman M Mand Jirsa V K 2013 Emergent dynamics from spiking neuron networks through symmetry breaking of connectivity PLoS One 8 e64339[18] Prigogine I 1989What is entropy? Naturwissenschaften 76 1–8[19] Prigogine I 1987 The meaning of entropy Evolutionary Epistemology (Berlin: Springer) pp 57–73[20] Ingvar D H 1985 ‘Memory of the future’: an essay on the temporal organization of conscious awareness Hum. Neurobiol. 4 127–36[21] Bernstein N A 1967 The Co-ordination and Regulation of Movements (Oxford: Pergamon)[22] Kelso J A S 1995 Dynamic Patterns: The Self-Organization of Brain and Behavior (Cambridge,MA: MIT Press)[23] Turvey MT and Shaw R E 1999 Ecological foundations of cognition: I. Symmetry and specificity of animal-environment systems J. Conscious. Stud. 6 95–110[24] Turvey MT, Shaw R E, Reed E S and MaceWM 1981 Ecological laws of perceiving and acting: in reply to Fodor and Pylyshyn (1981) Cognition 9 237–304[25] Gibson J J and Carmichael L 1966 The Senses Considered as Perceptual Systems vol 2 (Boston: Houghton Mifflin) pp 44–73[26] Kelso J S, Dumas G and Tognoli E 2013 Outline of a general theory of behavior and brain coordination Neural Netw. 37 120–31[27] Kelso J A S, Jirsa V K and Fuchs A 1999 From level to level in brain and behavior New Developments in Statistical Mechanics ed M Bachelor and L T Wille (Singapore: World Scientific)[28] Carson R G and Kelso J S 2004 Governing coordination: behavioural principles and neural correlates Exp. Brain Res. 154 267–74[29] Haken H, Kelso J S and Bunz H 1985 A theoretical model of phase transitions in human hand movements Biol. Cybern. 51 347–56[30] Beek P J and BeekWJ 1988 Tools for constructing dynamical models of rhythmic movement Hum. Mov. Sci. 7 301–42[31] Beek P J, Peper C E and Daffertshofer A 2002Modeling rhythmic interlimb coordination: beyond the Haken–Kelso–Bunz model Brain Cognit. 48 149–65[32] Jirsa V K and Scott Kelso J A 2005 The excitator as a minimal model for the coordination dynamics of discrete and rhythmic movement generation J. Mot. Behav. 37 35–51[33] Kelso J A 1984 Phase transitions and critical behavior in human bimanual coordination Am. J. Physiol. Regul. Integr.Comp. Physiol. 246 R1000–4[34] Adam J J, Paas F G, Eyssen I C, Slingerland H, Bekkering H and Drost M 1995 The control of two-element, reciprocal aiming movements: evidence for chunking Hum.Mov. Sci. 14 1–11[35] Calvin S, Huys R and Jirsa V K 2010 Interference effects in bimanual coordination are independent of movement type J. Exp. Psychol. Hum. Percept. Perform. 36 1553[36] Beek P J, RikkertWE and van Wieringen P C 1996 Limit cycle properties of rhythmic forearm movements J. Exp. Psychol. Hum. Percept. Perform. 22 1077[37] Beek P J, Schmidt R C, Morris A W, SimM Y and Turvey M T 1995 Linear and nonlinear stiffness and friction in biological rhythmic movements Biol. Cybern. 73 499–507[38] Kelso J A S 1981 On the oscillatory basis of movement Bull. Psychonomic Soc. 18 63[39] Kelso J A S 1992 Concepts and issues in human motor behavior: coming to grips with the jargon Human Motor Behavior: An Introduction ed J A S Kelso (Hillsdale, NJ: Lawrence Erlbaum Associates) pp 21–58[40] Kelso J A S, Delcolle J D and Schöner G 1990 Action-perception as a pattern formation process Attention and Performance XIII ed MJeannerod (Hillsdale, NJ: Erlbaum) pp 139–69[41] Kelso J A, Southard D L and Goodman D 1979 On the nature of human interlimb coordination Science 203 1029–31[42] Kelso J S, Southard D L and Goodman D 1979 On the coordination of two-handed movements J. Exp. Psychol. Hum. Percept. Perform. 5 229[43] Kelso J A S and Tuller B 1984 A dynamical basis for action systems Handbook of Cognitive Neuroscience ed M S Gazzaniga (New York: Plenum) pp 321–56[44] Kelso J A S and Zanone P G 2002 Coordination dynamics of learning and transfer across different effector systems J. Exp. Psychol. Hum. Percept. Perform. 28 776[45] Bootsma R J, Fernandez L and Mottet D 2004 Behind Fitts’ law: kinematic patterns in goal-directed movements Int. J. Hum.-Comput. Stud. 61 811–21[46] Huys R, Studenka B E, Zelaznik H N and Jirsa V K 2010 Distinct timing mechanisms are implicated in distinct circle drawing tasks Neurosci. Lett. 472 24–8[47] Huys R, Fernandez L, Bootsma R J and Jirsa V K 2010 Fitts’ law is not continuous in reciprocal aiming Proc. R. Soc. B 277 1179–84[48] Huys R, Perdikis D and Jirsa V K 2014 Functional architectures and structured flows on manifolds: a dynamical framework for motor behavior Psychol. Rev. 121 302[49] Perdikis D, Huys R and Jirsa V 2011 Complex processes from dynamical architectures with time-scale hierarchy PLoS One 6 e16589[50] Perdikis D, Huys R and Jirsa V K 2011 Time scale hierarchies in the functional organization of complex behaviors PLoS Comput. Biol. 7 e1002198[51] Danion F and Jirsa V K 2010 Motor prediction at the edge of instability: alteration of grip force control during changes in bimanual coordination J. Exp. Psychol. Hum. Percept. Perform. 36 1684[52] Fink PW, Kelso J S and Jirsa V K 2009 Perturbation-induced false starts as a test of the Jirsa–Kelso excitator model J. Mot. Behav. 41 147–57[53] Knol H, Huys R, Sarrazin J C, Spiegler A and Jirsa V K 2017 Ebbinghaus figures that deceive the eye do not necessarily deceive the hand Sci. Rep. 7 3111[54] GrazianoM S, Taylor C S and Moore T 2002 Complex movements evoked by microstimulation of precentral cortex Neuron 34 841–51[55] GrazianoM S and Aflalo T N 2007 Mapping behavioral repertoire onto the cortex Neuron 56 239–51[56] Brennan C and Proekt A 2019 A quantitative model of conserved macroscopic dynamics predicts future motor commands Elife 8 e46814[57] Jirsa V, Friedrich R and Haken H 1995 Reconstruction of the spatio-temporal dynamics of a human magnetoencephalogram Physica D 89 100–22[58] Guckenheimer J and Holmes P 2013 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields vol 42 (Berlin: Springer)[59] Ashwin P and Swift JW1992 The dynamics of n weakly coupled identical oscillators J. Nonlinear Sci. 2 69–108[60] Chossat P and Lauterbach R 2000 Methods in Equivariant Bifurcations and Dynamical Systems vol 15 (Singapore: World Scientific)[61] Crawford J D and Knobloch E 1991 Symmetry and symmetry-breaking bifurcations in fluid dynamics Annu. Rev. Fluid Mech. 23 341–87[62] GolubitskyM and Stewart I 2003 The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space vol 200 (Berlin: Springer)[63] Brunel N andWang X J 2001 Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition J. Comput. Neurosci. 11 63–85[64] Zerlaut Y, Tele´nczuk B, Deleuze C, Bal T, Ouanounou G and Destexhe A 2016 Heterogeneous firing rate response of mouse layer V pyramidal neurons in the fluctuation-driven regime J. Physiol. 594 3791–808[65] Jirsa V K and Stefanescu R A 2011 Neural population modes capture biologically realistic large scale network dynamics Bull. Math. Biol. 73 325–43[66] Stefanescu R A and Jirsa V K 2008 A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory neurons PLoS Comput. Biol. 4 e1000219[67] Montbri´o E, Paz´o D and Roxin A 2015 Macroscopic description for networks of spiking neurons Phys. Rev. X 5 021028[68] Ghosh A, Rho Y, McIntosh A R, Kötter R and Jirsa V K 2008 Noise during rest enables the exploration of the brain’s dynamic repertoire PLoS Comput. Biol. 4 e1000196[69] Deco G and Jirsa V K 2012 Ongoing cortical activity at rest: criticality, multistability, and ghost attractors J. Neurosci. 32 3366–75[70] Hansen E C, Battaglia D, Spiegler A, Deco G and Jirsa V K 2015 Functional connectivity dynamics: modeling the switching behavior of the resting state Neuroimage 105 525–35[71] Deco G, Jirsa V K and McIntosh A R 2013 Resting brains never rest: computational insights into potential cognitive architectures Trends Neurosci. 36 268–74[72] Lombardo D et al 2020 Modular slowing of resting-state dynamic functional connectivity as a marker of cognitive dysfunction induced by sleep deprivation NeuroImage 222 117155[73] Battaglia D et al 2020 Dynamic functional connectivity between order and randomness and its evolution across the human adult lifespan NeuroImage 222 117156[74] Deco G, KringelbachM L, Jirsa V K and Ritter P 2017 The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core Sci. Rep. 7 3095[75] GolosM, Jirsa V and Dauc´e E 2015 Multistability in large scale models of brain activity PLoS Comput. Biol. 11 e1004644[76] Dong DW1995 Associative decorrelation dynamics: a theory of self-organization and optimization in feedback networks Advances in Neural Information Processing Systems pp 925–32[77] Huang C G, Zhang Z D and Chacron MJ 2016 Temporal decorrelation by SK channels enables efficient neural coding and perception of natural stimuli Nat. Commun. 7 11353[78] Daugman J G 1989 Entropy reduction and decorrelation in visual coding by oriented neural receptive fields IEEE Trans. Biomed. Eng. 36 107–14[79] Petkoski S and Jirsa V K 2019 Transmission time delays organize the brain network synchronization Phil. Trans. R. Soc. A 377 20180132[80] Jirsa V and Müller V 2013 Cross-frequency coupling in real and virtual brain networks Front. Comput. Neurosci. 7 78[81] Wedemann R S and Plastino A R 2020 Nonlinear, nonequilibrium landscape approach to neural network dynamics Int. Conf. on Artificial Neural Networks (Berlin: Springer) pp 180–91